\qquad

24022

B. Tech. 3rd Semester (CSE)
 Examination - December, 2018

MATHEMATICS - III
Paper: Math-201-F
Time : Three Hours]
[Maximum Marks : 100
Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.
Note: Attempt five questions in all, by selecting one Question from each Section. Question No. 1 is compulsory.

1. Compulsory question:
(a) State Dirichlet's condition for existence of fourier series of a function
(b) If $F_{s}(S)$ and $F_{c}(S)$ are fourier sine and cosine transform of $f(x)$ respectively, then show that:
(i) $\quad F_{s}(x f(x))=\frac{-d}{d x}\left\{F_{c}(s)\right\}$
(ii) $F_{c}(x f(x))=\frac{d}{d s}\left\{F_{s}(s)\right\}$
(c) Show that:

$$
f(z)=\frac{x^{2} y^{3}(x+i y)}{x^{6}+y^{10}}, z \neq 0, f(0)=0
$$

is not analytic at origin.
(d) Evaluate:

$$
\int_{0}^{1+i}\left(x^{2}-i y\right) d z \text { along the path } y=x^{2}
$$

(e) Find the radius of convergence of the power series :

$$
\sum \frac{2^{-n} z^{n}}{1+i n^{2}}
$$

(f) A variate X has the probability distribution:

$$
\begin{array}{cccc}
\mathrm{X}: & -3 & 6 & 9 \\
\mathrm{P}[\mathrm{X}=\mathrm{x}]: & 1 / 6 & 1 / 2 & 1 / 3
\end{array}
$$

Find E $\left[(2 x+1)^{2}\right]$.
(b) Using Dual simplex method, solve :
$\operatorname{Min} z=x_{1}+2 x_{2}+3 x_{3}$
Subject to :

$$
\begin{aligned}
& 2 x_{1}-x_{2}+x_{3} \geq 4, x_{1}+x_{2}+2 x_{3} \leq 8, x_{2}-x_{3} \geq 2 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

\qquad
(b) A certain screw making machine produces on average 2 defective screw out of 100 , and packs them in boxes of 500 . Find the probability that a box contains 15 defective screws.

SECTION - D

8. (a) 325 men out of 600 men chosen from a big city were found to be smokers. Does this information support the conclusion that the majority of men in the city are smokers.
(b) Two independent samples of size 7 and 9 have the following values:

10

Sample A :	10	12	10	13	14	11	10	-	-
Sample B	10	13	15	12	10	14	11	12	11

Test whether the difference between the mean is significant.
9. (a) Using Simplex method, solve :
$\operatorname{Max} z=x_{1}+x_{2}+3 x_{3}$
Subject to $3 x_{1}+2 x_{2}+x_{3} \leq 3,2 x_{1}+x_{2}+2 x_{3} \leq 2$, $x_{1}, x_{2}, x_{3} \geq 0$.
(g) Write a short note on :
(i) Test of significance
(ii) Errors
(h) Solve graphically $\operatorname{Max} z=3 x+4 y$, subject to the constraints $2 x+4 y \leq 40 ; 2 x+5 y \leq 180, x \geq 0, y \geq 0$.

SECTION - A

2. (a) Find the fourier series expansion of $f(x)$ if:

10

$$
f(x)=\left\{\begin{array}{cc}
-\pi, & -\pi<x<0 \\
x, & 0<x<\pi
\end{array}\right.
$$

and hence deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots . .=\frac{\pi^{2}}{8}$.
(b) Develop $f(x)$ in a fourier series in the interval $(0,2)$ if. :

10

$$
\begin{aligned}
f(x) & =x, 0<x<1 \\
& =0,1<x<2
\end{aligned}
$$

P. T. O.
3. (a) Express $f(x)=\left\{\begin{array}{ll}1 & \\ 0 \leq x \leq \pi \\ 0 & x>\pi\end{array}\right.$ as a fourier sine integral and hence evaluate $\int_{0}^{\infty} \frac{1-\cos (\pi \lambda)}{\lambda} \sin (x \lambda) d \lambda$. 10
(b) Find the fourier cosine transform of $e^{-x^{2}} .10$

SECTION - B

4. (a) Express $\log (\log i)$ in the form $A+i B$.
(b) If $\tan (\theta+i \phi)=\tan \alpha+i \sec \alpha$, show that:
$e^{2 \phi}= \pm \cot \alpha / 2$ and $2 \theta=\left(n+\frac{1}{2}\right) \pi+\alpha$
5. (a) If $w=\phi+i \psi$ represents the complex potential function for an electric field and $\psi=x^{2}-y^{2}+\frac{x}{x^{2}+y^{2}}$, determine ϕ.
(b) Evaluate $\oint_{C} \frac{e^{-2 z}}{(z+1)^{3}} d z$, where C is the circle $|z|=2$ by using Cauchy's integral formula.

SECTION - C

6. (a) Expand $\frac{e^{2 z}}{(z-1)^{3}}$ about the singularity $z=1$ in Laurent series.
(b) Evaluate
the
integral
$\int_{0}^{2 \pi} \frac{d \theta}{1-2 r \sin \theta+r^{2}},(0<r<1)$.
7. (a) A bag X contains 2 white and 3 red balls and a bag Y contains 4 white and 5 red balls. One ball is drawn at random from one of the bags and is found to be red. Find the probability that it was drawn from bag Y.
